wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If log1015=a, log2050=b, then the value of 5−b2ab+2a−4b+2 is equal to

A
log940
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
log935
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
log99
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
log4040
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A log940
Given log1015=a and log2050=b ...(i)
5b2ab+2a4b+2 = 5log2050(2log1015×log2050)+2log10154log2050+2 (using (1))
=5loge50loge202(loge15loge10)(loge50loge20)+2(loge15loge10)4(loge50loge20)+2 (logab=logeblogea)
=5loge20loge50loge202loge15loge50+2loge15loge204loge10loge50+2loge10loge20loge10×loge20
=loge10[loge(20)5loge50]2loge15(loge50+loge20)+2loge10(loge202loge50) (logxm=mlogx)
=loge10[loge(20)5loge50]loge(15)2(loge1000)+2loge10[loge20loge(50)2] (log(mn)=logm+logn)
=loge10[loge(20)550]loge10[3loge225+2loge20(50)2] (log(mn)=logmlogn)
=loge(20)550loge(225)3+loge(20(50)2)2
=loge(20)550loge[(225)3(20)2(50)4] (log(mn)=logm+logn)
=loge(40)3loge(9)3
=3loge403loge9 (logab=logeblogea)
=loge40loge9=log940

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Inequalities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon