x=log1218=log18log12 ......... [∵logba=logalogb]
=log(2⋅32)log(22⋅3)=2log3+log22log2+log3 ......... [∵log(ab)=loga+logb and logam=mloga]
Similarly, y=log244=2log23log2+log3
Consider, z=xy−(5y+2x)+4=(x−5)(y−2)−6
⇒z=(2log3+log22log2+log3−5)(2log23log2+log3−2)−6
⇒z=(2log3+log2−10log2−5log32log2+log3)(2log2−6log2−2log33log2+log3)−6
⇒z=(−3log3−9log22log2+log3)(−4log2−2log33log2+log3)−6=3×2−6=0
Ans: 0