If log2(9x−1+7)−log2(3x−1+1)=2 then x values are
0, 2
0,1
1, 4
1,2
9x−1+73x−1+1=4[3(x−1)]2−4(3x−1)+3=0
If f:R→R and g:R→ are defined by f(x)=2x+3 and g(x)=x2+7, then the values of x such that g(f(x))=8 are