The correct options are
B 1
C 2
log2(32x−2+7)=2+log2(3x−1+1)
log2(32x−2+7)=2log22+log2(3x−1+1)[∵logaa=1]
⇒log2(32x−2+7)=log24(3x−1+1)[∵mloga=logam&loga+logb=log(ab)]
⇒32x−2+7=4(3x−1+1)
⇒(3x−1)2−4(3x−1)+3=0
⇒(3x−1−1)(3x−1−3)=0
⇒3x−1=1,3x−1=3
⇒x−1=0,x−1=1
⇒x=1,2
Ans: B,C