If log(m+n)=logm+logn, then:
if logm+logn=log(m+n), find m in terms of n
We can write this as: log(mn)=log(m+n)
∴mn=m+n
Subtracting n from both the sides we get,
mn–n=m
n(m−1)=m
mm−1=n
If log (m+n)=log m+ log n ,show that n=m/(m-1).
If logm+logn=log(m+n) find the value of m in terms of n