The correct option is A 254
Given: K(x2−x)+x+5=0, roots are m,n and mn+nm=45.
We have, K(x2−x)+x+5=0
⇒Kx2+(1−K)x+5=0
⇒ Sum of roots =m+n=K−1K⋯(i)
⇒ Product of roots =m.n=5K⋯(ii)
Also we have, mn+nm=45
⇒m2+n2mn=45
⇒(m+n)2−2mnmn=45
⇒(K−1K)2−25K5K=45 [From (i) and (ii) ]
⇒K2−12K+15K=45
⇒K2−16K+1=0
⇒ Sum of roots =K1+K2=16⋯(iii)
⇒ Product of roots =K1.K2=1⋯(iv)
We have, K1K2+K2K1
K1K2+K2K1=K21+K22K1.K2
⇒K1K2+K2K1=(K1+K2)2−2K1.K2K1.K2
⇒K1K2+K2K1=(16)2−2.11 [From (iii) and (iv) ]
⇒K1K2+K2K1=254