If n(A)=3,n(B)=5and n(A∩B)=2 then n[(A×B)∩(B×A)]=
5
3
4
6
Explanation of the correct option
Given: n(A)=3,n(B)=5,n(A∩B)=2
We know that,
(A×B)∩(B×A)=A∩B×B∩A⇒(A×B)∩(B×A)=A∩B2∵A∩B=B∩A⇒n(A×B)∩(B×A)=nA∩B2⇒n(A×B)∩(B×A)=22⇒n(A×B)∩(B×A)=4
Hence, option(C) i.e. 4 is the correct option.