If n(U)=700, n(A)=200, n(B)=300 and n(A∩B)=100, then n(A′∩B′) = ____.
300
By de-Morgan's law of complementation for sets A and B, we have
(A∪B)′=A′∩B′.
The portion in green represents this set.
Thus, n(A′∩B′)=n((A∪B)′).
But, n((A∪B)′)=n(U)−n(A∪B), where U is the universal set.
Also, n(A∪B)=n(A)+n(B)−n(A∩B)
=200+300−100
=400
∴n(A∪B)′=n(U)−n(A∪B)
=700−400
=300
∴n(A′∩B′)=n((A∪B)′)=300