If n is a positive integer and (1+x+x2)n=2n∑r=0arxr ,then the value a0+a1+a2+a3⋯an−1 equals
A
3n+an2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3n+an+r2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3n−an2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C3n−an2 (1+x+x2)n=a0+a1x1+a2x2+...a2nx2n Hence ar=a2n−r Substituting x=1 we get 3n=a0+a1+a2+...a2n ar=a2n−r Therefore 3n=a0+a1+a2+...an+...a2n−2+a2n−1+a2n =(a0+a2n)+(a1+a2n−1)+(a2+a2n−2)+...(an−1+an+1)+an =2[a0+a1+a2+a3+...an−1]+an 3n−an2=a0+a1+a2+a3+...an−1