If O be the origin and the coordinates of P be (1,2,−3), then the equation of the plane passing through P and perpendicular to OP is
Let the points be O(0,0,0) and P(1,2,−3).
The direction ratios of OP are,
(1−0),(2−0),(−3−0)=(1,2,−3)
The plane passing through (x1,y1,z1) is,
a(x−x1)+b(y−y1)+c(z−z1)=0
1(x−1)+2(y−2)−3(z+3)=0
x−1+2y−4−3z−9=0
x+2y−3z−14=0