If →a=2^i−3^j+^k,→b=−^i+^k,→c=2^j−^k, then area of parallelogram having diagonals →a+→b and →b+→c (in sq. units) is
A
√21
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
√212
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
√19
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
√192
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B√212 Let →x=→a+→b=(2^i−3^j+^k)+(−^i+^k)=^i−3^j+2^k
Let →y=→b+→c=(−^i+^k)+(2^j−^k)=−^i+2^j
Area of parallelogram =12|→x×→y| ⇒12|(^i−3^j+2^k)×(−^i+2^j)|=12∣∣
∣
∣∣^i^j^k1−32−120∣∣
∣
∣∣ =12|((0−4)^i−(0+2)^j+(2−3)^k)|=12|(−4^i−2^j−^k)|=√16+4+12=√212 sq. units