If →a,→b,→c are non coplanar vectors, then [→a×→b,→b×→c,→c×→a]is equal to
If →a,→b,→c are the vertices of a triangle ABC then |→a×→b+→b×→c+→c×→a| is equal to
Nonzero vectors →a,→b,→c satisfy →a.→b=0,(→b−→a).(→b+→c)=0 and 2|→b+→c|=|→b−→a|. If →a=μ→b+4→c then μ= ___
A(→a), B(→b), C(→c) are the vertices of a triangle ABC and R(→r) is any point in the plane of triangle ABC, then →r.(→a×→b+→b×→c+→c×→a) is always equal to