If p = - 10, find the value of p2 - 2p - 100
Find the required value
From the given data p=-10
The given equation is
p2-2p-100
On substituting the value of p in the above algebraic equation and simplifying we get
p2-2p-100=(-10)2–(2×(-10))-100=100+20–100=20
Hence the value of p2-2p-100 is 20
(i) If z = 10, find the value of z3 − 3 (z − 10).
(ii) If p = − 10, find the value of p2 − 2p − 100
If secθ+tanθ=p , prove that
(i) secθ=12(p+1p)
(ii) tanθ=12(p−1p)
(iii) sinθ=p2−1p2+1
Question 8 (ii)
If p = - 10, find the value of p2−2p−100