If 'p' and 'q' are rational numbers, then find 'p' and 'q' given that 3+√73−√7=p+q√7
p=−8,q=3
p=−8,q=−3
p=8,q=−3
p=8,q=3
3+√73−√7=p+q√7
3+√73−√7×3+√73−√7=p+q√7
(3+√7)2(3)2−(√7)2=p+q√7
(3)2+2(3)(√7)+(√7)29−7=p+q√7
9+6√7+72=p+q√7
16+6√72=p+q√7
/2(8+3√7)/2=p+q√7
If 'p' and 'q' are rational numbers, then find the values of 'p' and 'q' given that 4−2√32+√3=p√6+q
Subtract 4p2q−3pq+5pq2−8p+7q−10 from18−3p−11q+5pq−2pq2+5p2q
Question 82 (vi)
Subtract
7p(3q + 7p) from 8p(2p - 7q)