If P and Q are the sum of odd terms and the sum of even terms respectively, in the expansion of (x+a)n then prove that (i) P2−Q2=(x2−a2)n
(ii) 4PQ=(x+a)2n−(x−a)2n
Open in App
Solution
(a+x)n=nC0an+nC1an−1x+nC2an−2x2+...nCnxn And (a−x)n=nC0an−nC1an−1x+nC2an−2x2+...(−1)nnCnxn Adding, we get (a+x)n+(a−x)n=2[nC0an+nC2an−2x2+nC4an−4x4+nC6an−6x6+...nCnxn] Hence P=(a+x)n+(a−x)n2 ...(i) Similarly Q=(a+x)n−(a−x)n2...(ii) Therefore PQ=(a+x)n+(a−x)n2×(a+x)n−(a−x)n2 =(a+x)2n−(a−x)2n4 Or 4PQ=(a+x)2n−(a−x)2n And P2−Q2 =(P+Q)(P−Q) =[(a+x)n+(a−x)n2+(a+x)n−(a−x)n2][(a+x)n+(a−x)n2−(a+x)n−(a−x)n2] =(a+x)n.(a−x)n =(a2−x2)n Hence proved.