wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If P and Q are the sum of odd terms and the sum of even terms respectively, in the expansion of (x+a)n then prove that
(i) P2Q2=(x2a2)n
(ii) 4PQ=(x+a)2n(xa)2n

Open in App
Solution

(a+x)n=nC0an+nC1an1x+nC2an2x2+...nCnxn
And
(ax)n=nC0annC1an1x+nC2an2x2+...(1)nnCnxn
Adding, we get
(a+x)n+(ax)n=2[nC0an+nC2an2x2+nC4an4x4+nC6an6x6+...nCnxn]
Hence
P=(a+x)n+(ax)n2 ...(i)
Similarly Q=(a+x)n(ax)n2...(ii)
Therefore
PQ=(a+x)n+(ax)n2×(a+x)n(ax)n2
=(a+x)2n(ax)2n4
Or
4PQ=(a+x)2n(ax)2n
And
P2Q2
=(P+Q)(PQ)
=[(a+x)n+(ax)n2+(a+x)n(ax)n2][(a+x)n+(ax)n2(a+x)n(ax)n2]
=(a+x)n.(ax)n
=(a2x2)n
Hence proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sum of Coefficients of All Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon