If p=cos2α+isin2α,q=cos2β+isin2β then the value of √pq−√qp=
If cos α+cos β=0=sin α+sin β, then prove that cos 2α+cos 2β=−2 cos (α+β)
If a root of the equations x2+px+q=0 and x2+αx+β=0 is common, then its value will be ( where p ≠ α and q ≠ β )