The correct options are
A (3,0)
D (−7225,2125)
Let coordinates of P=(3cosα,3sinα)
Let x− coordinate of Q is x1 then
y− coordinate of Q is −7x1−3 then
∴Q=(x1,−7x1−3)
∵x−y+1=0 is the perpendicular bisector of PQ then midpoint of PQ lie on x−y+1=0
⇒3cosα+x12−3sinα−7x1−32+1=0
⇒8x1+3cosα−3sinα+5=0
Multiply the above equation by 3
⇒24x1+9cosα−9sinα+15=0 ..........(1)
and slope of(x−y+1=0)×slope of PQ=−1
⇒1×3sinα+7x1+33cosα−x1=−1
⇒3sinα+7x1+3=−3cosα+x1
⇒6x1+3sinα+3cosα+3=0
Multiply the above equation by 4
⇒24x1+12sinα+12cosα+12=0 ..............(2)
Subtracting (1) and (2), we obtain
−3cosα−21sinα+3=0
⇒3(1−cosα)=21sinα
⇒(1−cosα)=7sinα
Squaring both sides, we get
⇒(1−cosα)2=49sin2α
⇒(1−cosα)2=49(1−cos2α)
⇒(1−cosα)2=49(1+cosα)(1+cosα)
Removing the common both sides, we get
⇒(1−cosα)(1−cosα−49−49cosα)
∴cosα=1 and −50cosα=48
or cosα=1 and cosα=−2425
∴ Co-ordinates of P are (3,0) and (−7225,2125)