The correct option is B 13
a1a.(2a)12a.(4a)14a.(8a)18a…∞
=a⎛⎝1a+12a+14a+…∞⎞⎠⋅2⎛⎝12a+24a+38a+…∞⎞⎠
Now, 1a(1+12+122+…∞)=1a⋅11−12=2a
and
12a+24a+38a+…∞
=12a(1+2⋅12+3⋅14+…∞)
It is forming AGP
a=1, d=1, r=12
For |r|<1, n→∞
S∞=a1−r+dr(1−r)2
=12a⎡⎢
⎢
⎢
⎢
⎢⎣11−12+1⋅12(1−12)2⎤⎥
⎥
⎥
⎥
⎥⎦
=12a⋅4
=2a
∴a1a⋅21a=827=(13)3⋅23
⇒a=13