Coefficient of correlation of x and y is r and σ2x,σ2y and σ2x−y are varience of x, y and x−y
σ2x−y=1n[(x−y)−(¯x−¯y)]2
σ2x−y=1n[(x−y)−(¯x)+(¯y)]2
σ2x−y=1n[(x−¯x)−(y−¯y)]2
σ2x−y=1n[(x−¯x)2+(y−¯y)2−2(x−¯x)(y−¯y)]
σ2x−y=1n[(x−¯x)2]+1n[(y−¯y)2]−21n(x−¯x)(y−¯y)
σ2(x−y)=σ2x+σ2y−2rσxσy
2rσxσy=σ2x+σ2y−σ2(x−y)
∴r=σ2x+σ2y−σ2(x−y)2σxσy We know that r=∑(x−¯x)(y−¯y)nσxσy.