If S1,S2,S3 be respectively the sums of n,2n,3n terms of a G.P., then prove that If the series a1,a2,a3,.an be a G.P. of common ratio r, then prove that 1a1m+a2m+1a2m+a3m+...+1amn−1+amn−1=1−rm(1−n)am1(rm−r−m)
Open in App
Solution
a2=a1r,a3=a2r,..,an=an−1r S=11+rm[1am1+1am2+.....1amn−1]=11+rm.S1 Now S1=[1am1+1(a1.r)m+1(a1.r2)m+.....1(a1.rn−2)m] =1am1[Sum of G.P.of(n−1)terms whose first term is 1 and common ration is1rm] ∴S1=1am1⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1.[1−(1rm)n−1]1−1rm⎤⎥
⎥
⎥
⎥
⎥
⎥⎦=1am1[1−r−m(n−1)1−r−m] ∴S=11+rm.S1=1am1[1−rm(1−n)(1+rm)(1−r−m)]