If S=sinπn+sin3πn+sin5πn+...n terms, then nS=
Given series S=sinπn+sin3πn+sin5πn+...sin(α+(n−1)β)
Comparing the given series with standard sine series:
sinα+sin(α+β)+sin(α+2β)+sin(α+3β)+...
α=πn
β=2πn
Sum of the sine series =sinnβ2sinβ2sin(α+(n−1)β2)
=sin(n×2π2×n)sin(2π2×n)sin(πn+(n−1)2π2.n)
=sinπsin(πn)×sin(πn+(n−1)πn)
=0sin(πn)sin(πn+(n−1)πn)
=0
⇒nS=n×0=0