The correct option is A S={1}
For log to be defined
x+1>0⇒x>−1 and
x+1≠0⇒x≠−1 ⋯(1)
Also,
4−x2>0⇒−2<x<2 ⋯(2)⇒2+log2√x+1>1−log12√4−x2⇒2+12log2√x+1>1+12log2√4−x2⇒1+12log2√x+1−12log2√4−x2>0⇒log22+12log2√x+1−12log2√4−x2>0⇒log2(2√x+1√4−x2)>0⇒(2√x+1√4−x2)>1⇒4(x+1)>4−x2⇒x2+4x>0⇒x(x+4)>0⇒x>0 or x<−4From (1), (2) and (3)x∈(0,2)