If secA=2√3, find the value of tanAcosA+1+sinAtanA
Open in App
Solution
Given, secA=2√3
In rightΔABC Since secA=2√3 AB = √3 and AC = 2 Now, by Pythagoras theorem AC2=AB2+BC2 22=(=√3)2=BC2 4=3+BC2 BC2=4−3 BC2=1 BC=1 So, tanA=1√3;cosA=√32;sinA=12 tanAcosA+1+sinAtanA=1√3√32+1+121√3 =23+321√3=23+3√32=4+9√36