If (sec A + tan A)(sec B + tan B)(sec C + tan C) = (sec A - tan A)(sec B - tan B)(sec C - tan C), then each side is equal to
(a,b) If L=M, then L2 = LM or ML = M2 Both LM = ML = 1 as sec2A - tan2A = 1 ∴L2 = M2 = 1.
In a triangle ABC we define x=tanB−C2tanA2,y=tanC−A2tanB2 and z=tanAB2tanC2 Then the value of x+y+z (in terms of x,y,z) is