If sec(ϕ−α),secϕ,sec(ϕ+α) are in A.P., prove that cosϕ=√2cos(α/2).
Open in App
Solution
Since sec(ϕ−α),secϕ,sec(ϕ+α) are in A.P ∴2secϕ=sec(ϕ−α)+sec(ϕ+α) or 2cosϕ=cos(ϕ+α)+cos(ϕ−α)cos(ϕ+α)−cos(ϕ−α) or 2.(cos2ϕ−sin2ϕ)=cosϕ[2cosϕcosα] cos2ϕ=1+cosα=2cos2(α/2) ∴cosϕ=√2cos(α/2)