If secθ=x+14x then prove that, secθ+tanθ=2x or 12x.
Step 1: Find the possible values of tanθ using trigonometric identities
Given that: secθ=x+14x
∵1+tan2θ=sec2θ⇒tan2θ=sec2θ-1
On expanding, we get
tan2θ=x+14x2-1⇒tan2θ=x2+116x2+12-1⇒tan2θ=x2+116x2-12⇒tan2θ=x-14x2⇒tan2θ=±x-14x
Step 2: Prove the required result
When tanθ=x-14x we get,
⇒secθ+tanθ=x+14x+x-14x⇒secθ+tanθ=2x
When tanθ=-x-14x we get,
⇒secθ+tanθ=x+14x-x-14x⇒secθ+tanθ=12x
Hence proved that secθ+tanθ=12x and, secθ+tanθ=2x.
loge(n+1)−loge(n−1)=4a[(1n)+(13n3)+(15n5)+...∞] Find 8a.
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.