If secθ+tanθ=x, then secθ=........
We have,
secθ+tanθ=x ……. (1)
(secθ+tanθ)(secθ−tanθ)(secθ−tanθ)=x
(sec2θ−tan2θ)(secθ−tanθ)=x
We know that
sec2θ−tan2θ=1
Therefore,
1(secθ−tanθ)=x
secθ−tanθ=1x ……. (2)
On adding the equation (1) and (2), we get
2secθ=x+1x
2secθ=x2+1x
secθ=x2+12x
Hence, this is the answer.