If secθ=x+14x, then secθ+tanθ=
x,1x
2x,12x
−2x,12x
−1x,x
We have,
secθ=x+14x
⇒sec2θ=x2+116x2+12
⇒1+tan2θ=1+x2+116x2−12
⇒tan2θ=x2+116x2−12
⇒tan2θ=(x−14x)2
∴tanθ=±.(x−14x)
⇒secθ−tanθ
=(x+14x)−(x−14x)
or (x+14x)−[−(x−14x)]
=2x,12x