1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties Derived from Trigonometric Identities
If sin-1x+s...
Question
If
sin
−
1
x
+
sin
−
1
y
+
sin
−
1
z
=
π
, prove that
x
√
1
−
x
2
+
y
√
1
−
y
2
+
z
√
1
−
z
2
=
2
x
y
z
.
Open in App
Solution
We are given,
sin
−
1
x
+
sin
−
1
y
+
sin
−
1
z
=
π
.
let,
sin
−
1
x
=
A
⇒
sin
A
=
x
sin
−
1
y
=
B
⇒
sin
B
=
y
sin
−
1
z
=
C
⇒
sin
C
=
z
.
here,
A
,
B
,
C
∈
[
−
π
/
2
,
π
/
2
]
∴
A
+
B
+
C
=
π
........
(
1
)
now,
L
H
S
=
x
√
1
−
x
2
+
y
√
1
−
y
2
+
z
√
1
−
z
2
=
sin
A
.
√
1
−
sin
2
A
+
sin
B
√
1
−
sin
2
B
+
sin
C
.
√
1
−
sin
2
C
=
sin
A
.
cos
A
+
sin
B
cos
B
+
sin
C
.
cos
C
[Multiply & Divide by
2
]
=
2
2
[
sin
A
cos
A
+
sin
B
cos
B
]
+
sin
C
.
cos
C
=
[
2
sin
A
cos
A
+
2
sin
B
cos
B
]
2
+
sin
C
.
cos
C
(
2
sin
θ
cos
θ
=
sin
2
θ
)
=
(
sin
A
+
sin
2
B
)
2
+
sin
C
.
cos
C
=
2
sin
(
2
A
+
2
B
2
)
cos
(
2
A
−
2
B
2
)
2
+
sin
C
.
cos
C
=
sin
(
A
+
B
)
cos
(
A
−
B
)
+
sin
C
.
cos
C
=
sin
(
π
−
C
)
cos
(
A
−
B
)
+
sin
C
.
cos
(
π
−
(
A
+
B
)
)
=
sin
C
[
cos
(
A
−
B
)
−
cos
(
A
+
B
)
]
=
sin
C
[
−
2
sin
(
−
2
B
2
)
sin
(
3
A
2
)
]
=
2
sin
A
sin
B
sin
C
=
2
x
y
z
=
R
H
S
.
Suggest Corrections
2
Similar questions
Q.
Prove the following:
s
i
n
−
1
x
+
s
i
n
−
1
y
+
s
i
n
−
1
z
=
π
Show that
x
√
1
−
x
2
+
y
√
1
−
y
2
+
z
√
1
−
z
2
=
x
y
z
Q.
If
s
i
n
−
1
x
+
s
i
n
−
1
y
+
s
i
n
−
1
z
=
π
2
, then
x
2
+
y
2
+
z
2
+
2
x
y
z
=
Q.
If
sin
−
1
x
+
sin
−
1
y
+
sin
−
1
z
=
π
, then prove that
x
√
1
−
x
2
+
y
√
1
−
y
2
+
z
√
1
−
z
2
=
2
x
y
z
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
(a) If
c
o
s
−
1
p
+
c
o
s
−
1
q
+
c
o
s
−
1
r
=
π
, then prove that
p
2
+
q
2
+
r
2
+
2
p
q
r
=
1
(b) If
s
i
n
−
1
x
+
s
i
n
−
1
y
+
s
i
n
−
1
z
=
π
, then prove that
x
4
+
y
4
+
z
4
+
4
x
2
y
2
z
2
=
2
(
x
2
y
2
+
y
2
z
2
+
z
2
x
2
)
(c) If
t
a
n
−
1
x
+
t
a
n
−
1
y
+
t
a
n
−
1
z
=
π
or
π
/
2
show that
x
+
y
+
z
=
x
y
z
or
x
y
+
y
z
+
z
x
=
1
.
Q.
If
s
i
n
−
1
x
+
s
i
n
−
1
y
+
s
i
n
−
1
z
=
π
2
,
t
h
e
n
x
2
+
y
2
+
z
2
+
2
x
y
z
=
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Property 5
MATHEMATICS
Watch in App
Explore more
Properties Derived from Trigonometric Identities
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app