1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Higher Order Derivatives
If sin -1 × 2...
Question
If
sin
-
1
x
2
+
sin
-
1
y
2
+
sin
-
1
z
2
=
3
4
π
2
, find the value of x
2
+ y
2
+ z
2
Open in App
Solution
We know that the maximum value of
sin
-
1
x
,
sin
-
1
y
,
sin
-
1
z
is
π
2
and minimum value of
sin
-
1
x
,
sin
-
1
y
,
sin
-
1
z
is
-
π
2
Now,
For maximum value
LHS
=
sin
-
1
x
2
+
sin
-
1
y
2
+
sin
-
1
z
2
=
π
2
2
+
π
2
2
+
π
2
2
=
3
4
π
2
=
RHS
and For minimum value
LHS
=
sin
-
1
x
2
+
sin
-
1
y
2
+
sin
-
1
z
2
=
-
π
2
2
+
-
π
2
2
+
-
π
2
2
=
3
4
π
2
=
RHS
Now, For maximum value
sin
-
1
x
=
π
2
,
sin
-
1
y
=
π
2
,
sin
-
1
z
=
π
2
⇒
x
=
sin
π
2
,
y
=
sin
π
2
,
z
=
sin
π
2
⇒
x
=
1
,
y
=
1
,
z
=
1
∴
x
2
+
y
2
+
z
2
=
1
+
1
+
1
=
3
and for minimum value
sin
-
1
x
=
-
π
2
,
sin
-
1
y
=
-
π
2
,
sin
-
1
z
=
-
π
2
⇒
x
=
sin
-
π
2
,
y
=
sin
-
π
2
,
z
=
sin
-
π
2
⇒
x
=
-
1
,
y
=
-
1
,
z
=
-
1
∴
x
2
+
y
2
+
z
2
=
1
+
1
+
1
=
3
Suggest Corrections
0
Similar questions
Q.
If
(
sin
−
1
x
)
2
+
(
sin
−
1
y
)
2
+
(
sin
−
1
z
)
2
=
3
π
2
4
, then find the minimum value of
x
+
y
+
z
Q.
If
sin
-
1
x
+
sin
-
1
y
+
sin
-
1
z
+
sin
-
1
t
=
2
π
, then find the value of x
2
+ y
2
+ z
2
+ t
2
Q.
If
sin
−
1
x
+
sin
−
1
y
+
sin
−
1
z
=
π
2
,
then the value of
x
2
+
y
2
+
z
2
+
2
x
y
z
is equal to
Q.
If
(
sin
−
1
x
)
2
+
(
sin
−
1
y
)
2
+
2
(
sin
−
1
x
)
(
sin
−
1
y
)
=
π
2
, then
x
2
+
y
2
is equal to -
Q.
If
sin
−
1
x
+
sin
−
1
y
=
π
2
,then p
(
x
2
−
x
2
y
2
+
y
2
)
=
q
+
x
4
+
y
4
Find the value of
p
+
q
.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Higher Order Derivatives
MATHEMATICS
Watch in App
Explore more
Higher Order Derivatives
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app