We have,sin25∘.sin35∘.sin85∘=cosxa
12(2sin25∘.sin35∘.sin85∘)=cosxa
12(cos(−10∘)−cos(25∘+35∘).sin85∘)=cosxa
12((cos10∘−cos60∘).sin85∘)=cosxa
12(cos10∘.sin85∘−12.sin85∘)=cosxa
12(12(sin95∘+sin75∘)−12.sin85∘)=cosxa
14(sin(90∘+5∘)+sin75∘−sin(90∘−5∘))=cosxa
14(cos5∘+sin(90∘−15∘)−cos5∘)=cosxa
14cos15∘=cosxa
On comparing both sides, we get
x=15,a=4
Since,
x+a=15+4=19
Hence, this is the answer.