If sin[90 - (A+B)] = cosx = cosy
find the value of x and y; if y is the angle C of triangle ABC. (In triangle ABC, A+B=90∘)
both (a) and (b)
sin[90 - (A+B)] = cosx
sin[90 - (A+B)] = sin(90 - x)
Thus, x = A+B
sin[90 - (A+B)] = cosy
sin[90 - (A+B)] = sin(90 - y)
Thus, y = A+B
Now, In triangle ABC, A+B+C=180∘
and given, A+B=90∘ and y = angle C of triangle ABC,
Hence, y=C=90∘
Also, x=A+B=y=90∘