If sin[90∘- (A+B)] = cosx = cosy
find the value of x and y if y is the angle C of triangle ABC. (In triangle ABC, A + B = 90∘)
both (a) and (b)
sin[90∘ - (A+B)] = cosx
sin[90∘ - (A+B)] = cosx(A+B)
Thus, x = A+B
sin[90∘ - (A+B)] = cosy
sin[90∘ - (A+B)] = sin(90∘ - y)
Thus, y = A+B
In triangle ABC, A+B+C = 180∘
and given, A+B = 90∘
Hence, y = C = A+B = 90∘.