CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
Question

If sin(α+β)sin(αβ) = a+bab, αβ; ab; b0;then find the value of tan αtan β.

A
ab
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
ba
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a2b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
b2a2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A ab
Given :
sin(α+β)sin(αβ) = a+babApplying sin(α+β)=sinαcosβ + cosαsinβ, we get sinαcosβ + cosαsinβsinαcosβ cosαsinβ = a+bab

Applying componendo and dividendo we get:

(sinαcosβ + cosαsinβ)+(sinαcosβ cosαsinβ)(sinαcosβ + cosαsinβ)(sinαcosβ cosαsinβ)= (a+b)+(ab)(a+b)(ab)

2 sinαcosβ2 cosαsinβ = 2a2b tanαtanβ = ab

flag
Suggest Corrections
thumbs-up
0
mid-banner-image
mid-banner-image
similar_icon
Related Videos
thumbnail
lock
Aurangzeb's Reign of Endless Wars
HISTORY
Watch in App