If sin A + cos A = m and
sec A + cosec A = n, show that :
n(m2−1)=2m
sinθ+cosθ=m,secθ+cosecθ=n
Consider LHS
n(m2−1)=(secθ+cosecθ)[(cosθ+sinθ)2−1]=(secθ+cosecθ)[cos2θ+sin2θ+2sinθcosθ−1]=(secθ+cosecθ)[2sinθcosθ]since cos2θ+sin2θ=1=secθ.2sinθcosθ+cosecθ.2sinθcosθ=2sinθ+2cosθ=2[sinθ+cosθ]=2m