If sinA+sinB+sinC+sinD=4 then find the value of sinA×sinB×sinC×sinD.
Step 1: Compare the range of LHS and RHS.
Range of sinx∀x∈ℝ is -1,1
⇒-1≤sinA≤1⇒-1≤sinB≤1⇒-1≤sinC≤1⇒-1≤sinD≤1
Adding all four equations
⇒-4≤sinA+sinB+sinC+sinD≤4
For sinA+sinB+sinC+sinDto be equal to 4, sinA=sinB=sinC=sinD=1
Step 2: Calculate the given expression.
Since sinA=sinB=sinC=sinD=1
⇒sinA×sinB×sinC×sinD=14=1
Hence, value of sinA×sinB×sinC×sinD is 1.