If sinA+sinB+sinC=3, then cosA+cosB+cosc is equal to
3
2
1
0
Explanation for the correct option.
Given that, sinA+sinB+sinC=3...(1).
Recall: sin90ο=1
If we assume, A=B=C=90ο then the equation (1) is satisfied.
So, substitute A=B=C=90οin cosA+cosB+cosc we get:
cosA+cosB+cosC=cos90ο+cos90ο+cos90ο=0+0+0=0
Hence, option D is correct.
If p(x)=x+3, then p(3)+p(−3), is equal to