Given, sinα+sinβ=a
and cosα+cosβ=b
Now (cosα+cosβ)2+(sinα+sinβ)=b2+a2
or cos2α+cos2β+2cosαcosβ+sin2α+sin2β+2sinαsinβ=b2+a2
or (cos2α+sin2α)+(cos2β+sin2β)+2(cosαcosβ+sinαsinβ)=a2+b2
or 2+2cos(α−β)=a2+b2
or cos(α−β)=a2+b2−22
Now, tanα−β2=±√1−cos(α−β)1−cos(α−β)
=±
⎷1−a2+b2−221+a2+b2−22=±√4−a2−b2a2+b2
Ans: 4