wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinα+sinβ=a and cosα+cosβ=b, prove that tanαβ2=±xa2b2a2+b2. Find x

Open in App
Solution

Given, sinα+sinβ=a
and cosα+cosβ=b
Now (cosα+cosβ)2+(sinα+sinβ)=b2+a2
or cos2α+cos2β+2cosαcosβ+sin2α+sin2β+2sinαsinβ=b2+a2
or (cos2α+sin2α)+(cos2β+sin2β)+2(cosαcosβ+sinαsinβ)=a2+b2
or 2+2cos(αβ)=a2+b2
or cos(αβ)=a2+b222
Now, tanαβ2=±1cos(αβ)1cos(αβ)
=±    1a2+b2221+a2+b222=±4a2b2a2+b2
Ans: 4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon