wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin α+sin β=a and cos α+cos β=b, prove that

(i) sin(α+β)=2aba2+b2

(ii) cos(αβ)=a2+b222

Open in App
Solution

(i) We have,

sin α+sin β=a and cos α+cos β=b . . .(A)

Squaring and adding, we get

sin2α+sin2β+2 sin α sin β+cos2 α+cos2β+2 cos a cos β=a2+b2 1+1+2 (sin α sin β+cos α cos β)=a2+b2 2(sin α sin β+cos α cos β)=a2+b2

-2

2cos (αβ)=a2+b22

Thus, cos(αβ)=a2+b222 . . .(ii)

Again,

sin α+sin β=a 2 sin α+β2.cos αβ2=acos α+cos β=b 2 cos α+β2.cos αβ2=b
tanα+β2=ab . . .(B)

Now,

sin(α+β)=2 tanα+β21+tan2(α+β2)=2ab1+a2b2=2aba2+b2

Thus,

sin(α+β)=2aba2+b2

(ii) cos (αβ)=a2+b222

We have,

sin α+sin β=a and cos α+cos β=b

Squaring and adding, we get

sin2α+sin2β+2sin α sin β+cos2 α+cos2β+2 cos α cos β=a2+b2 1+1+2 (sin α sin β+cos α cos β)=a2+b2 2(sin α sin β+cos α cos β)=a2+b2 2cos (αβ)=a2+b22Thus, cos(αβ)=a2+b222


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon