If sin α+sin β=a and cos α+cos β=b, prove that
(i) sin(α+β)=2aba2+b2
(ii) cos(α−β)=a2+b2−22
(i) We have,
sin α+sin β=a and cos α+cos β=b . . .(A)
Squaring and adding, we get
sin2α+sin2β+2 sin α sin β+cos2 α+cos2β+2 cos a cos β=a2+b2⇒ 1+1+2 (sin α sin β+cos α cos β)=a2+b2⇒ 2(sin α sin β+cos α cos β)=a2+b2
-2
∴ 2cos (α−β)=a2+b2−2
Thus, cos(α−β)=a2+b2−22 . . .(ii)
Again,
sin α+sin β=a⇒ 2 sin α+β2.cos α−β2=acos α+cos β=b⇒ 2 cos α+β2.cos α−β2=b
⇒tanα+β2=ab . . .(B)
Now,
sin(α+β)=2 tanα+β21+tan2(α+β2)=2ab1+a2b2=2aba2+b2
Thus,
sin(α+β)=2aba2+b2
(ii) cos (α−β)=a2+b2−22
We have,
sin α+sin β=a and cos α+cos β=b
Squaring and adding, we get
sin2α+sin2β+2sin α sin β+cos2 α+cos2β+2 cos α cos β=a2+b2⇒ 1+1+2 (sin α sin β+cos α cos β)=a2+b2⇒ 2(sin α sin β+cos α cos β)=a2+b2∴ 2cos (α−β)=a2+b2−2Thus, cos(α−β)=a2+b2−22