wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

If sinα+sinβ=a and cosα+cosβ=b, then the value of sinα+β=maba2+b2 .Find m

Open in App
Solution

sinα+sinβ=a,cosα+cosβ=b
a2+b2=sin2α+sin2β+cos2α+cos2β+2(sinαsinβ+cosαcosβ)
a2+b2=2+2cos(αβ)
1+cos(αβ)=a2+b22
ab=sinαcosα+sinαcosβ+sinβcosα+sinβcosβ
=sin(α+β)+sin2α+sin2β2
=sin(α+β)+sin(α+β)cos(αβ)
=sin(α+β)[1+cos(αβ)]
ab=sin(α+β)(a2+b22)
sin(α+β)=2aba2+b2
Given,
sin(α+β)=maba2+b2
m=2

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon