sin[cot−1(x+1)]=cos(tan−1x) (1)
cot−1(x+1)=p
cotp=x+1
sinp=1√1+(x+1)2=1√x2+2x+2
p=sin−1(1√x2+2x+2)
& tan−1x=q
x=tanq
cosq=1√1+x2
q=cos−1(1√1+x2)
(1) Becomes
sin[sin−1(1√x2+2x+2)=cos[cos−1(1√1+x2)]]
⇒1√x2+2x+2=1√x2+1⇒x2+1=x2+2x+2
⇒2x=−1
x=−12