1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Trigonometric Ratios of Compound Angles
If sinα+sinβ=...
Question
If sin α + sin β = a and cos α + cos β = b, show that
(i)
sin
α
+
β
=
2
a
b
a
2
+
b
2
(ii)
cos
α
+
β
=
b
2
-
a
2
b
2
+
a
2
Open in App
Solution
(i)
a
2
+
b
2
=
sin
α
+
sin
β
2
+
(
cos
α
+
cos
β
)
2
⇒
a
2
+
b
2
=
sin
2
α
+
sin
2
β
+
2
sin
α
sin
β
+
cos
2
α
+
cos
2
β
+
2
cos
α
cos
β
⇒
a
2
+
b
2
=
sin
2
α
+
cos
2
α
+
sin
2
β
+
cos
2
β
+
2
sin
α
sin
β
+
cos
α
cos
β
⇒
a
2
+
b
2
=
2
+
2
cos
(
α
-
β
)
.
.
.
(
1
)
Now,
b
2
-
a
2
=
(
cos
α
+
cos
β
)
2
-
sin
α
+
sin
β
2
⇒
b
2
-
a
2
=
cos
2
α
+
cos
2
β
-
sin
2
α
-
sin
2
β
+
2
cos
α
cos
β
-
2
sin
α
sin
β
⇒
b
2
-
a
2
=
(
cos
2
α
-
sin
2
β
)
+
(
cos
2
β
-
sin
2
α
)
-
2
cos
(
α
+
β
)
⇒
b
2
-
a
2
=
2
cos
(
α
+
β
)
cos
(
α
-
β
)
+
2
cos
(
α
-
β
)
⇒
b
2
-
a
2
=
cos
(
α
+
β
)
(
2
+
2
cos
(
α
-
β
)
)
.
.
.
(
2
)
From (1) and (2), we have
b
2
-
a
2
=
cos
(
α
+
β
)
a
2
+
b
2
⇒
b
2
-
a
2
a
2
+
b
2
=
cos
(
α
+
β
)
⇒
sin
α
+
β
=
1
-
cos
2
(
α
+
β
)
⇒
sin
α
+
β
=
1
-
b
2
-
a
2
b
2
+
a
2
2
=
b
4
+
a
4
-
b
4
-
a
4
+
4
a
2
b
2
b
2
+
a
2
2
⇒
sin
α
+
β
=
2
a
b
a
2
+
b
2
(ii)
a
2
+
b
2
=
sin
α
+
sin
β
2
+
(
cos
α
+
cos
β
)
2
=
sin
2
α
+
sin
2
β
+
cos
2
α
+
cos
2
β
+
2
sin
α
sin
β
+
2
cos
α
cos
β
=
2
+
2
cos
(
α
-
β
)
⇒
b
2
-
a
2
=
(
cos
α
+
cos
β
)
2
-
sin
α
+
sin
β
2
⇒
b
2
-
a
2
=
cos
2
α
+
cos
2
β
-
sin
2
α
-
sin
2
β
+
2
cos
α
cos
β
-
2
sin
α
sin
β
⇒
b
2
-
a
2
=
(
cos
2
α
-
sin
2
β
)
+
(
cos
2
β
-
sin
2
α
)
-
2
cos
(
α
+
β
)
⇒
b
2
-
a
2
=
2
cos
(
α
+
β
)
cos
(
α
-
β
)
+
2
cos
(
α
-
β
)
⇒
b
2
-
a
2
=
cos
(
α
+
β
)
(
2
+
2
cos
(
α
-
β
)
)
⇒
b
2
-
a
2
=
cos
(
α
+
β
)
a
2
+
b
2
b
2
-
a
2
a
2
+
b
2
=
cos
(
α
+
β
)
Suggest Corrections
1
Similar questions
Q.
If
sin
α
+
sin
β
=
a
and
cos
α
+
cos
β
=
b
, prove that
(i)
sin
α
+
β
=
2
a
b
a
2
+
b
2
(ii)
cos
α
-
β
=
a
2
+
b
2
-
2
2
Q.
If
sin
α
+
sin
β
=
a
and
cos
α
+
cos
β
=
b
, then the value of
sin
α
+
β
=
m
a
b
a
2
+
b
2
.Find
m
Q.
If
cos
α
cos
β
=
a
,
sin
α
sin
β
=
b
, then
(
a
2
−
b
2
)
sin
2
β
=
a
2
−
1
Q.
If
sin
α
+
sin
β
=
a
and
cos
α
+
cos
β
=
b
, prove that
tan
α
−
β
2
=
±
√
x
−
a
2
−
b
2
a
2
+
b
2
. Find
x
Q.
If
c
o
s
α
+
c
o
s
β
+
c
o
s
γ
=
s
i
n
α
+
s
i
n
β
+
s
i
n
γ
=
0
, then
c
o
s
(
β
+
γ
)
+
c
o
s
(
γ
+
α
)
+
c
o
s
(
α
+
β
)
=
0
s
i
n
(
β
+
γ
)
s
i
n
(
γ
+
α
)
+
s
i
n
(
α
+
β
)
=
0
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Compound Angles
MATHEMATICS
Watch in App
Explore more
Trigonometric Ratios of Compound Angles
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app