wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin α + sin β = a and cos α + cos β = b, show that

(i) sin α+β=2aba2+b2
(ii) cos α+β=b2-a2b2+a2

Open in App
Solution

(i)
a2+b2=sinα+sinβ2+(cosα+cosβ)2a2+b2=sin2α+sin2β+2sinαsinβ+cos2α+cos2β+2cosαcosβa2+b2=sin2α+cos2α+sin2β+cos2β+2sinαsinβ+cosαcosβa2+b2=2+2 cos(α-β) ...(1)

Now,

b2-a2=(cosα+cosβ)2-sinα+sinβ2b2-a2 = cos2α+cos2β -sin2α-sin2β +2cosαcosβ-2sinαsinβb2-a2 =(cos2α-sin2β)+(cos2β-sin2α)-2cos(α+β) b2-a2 =2cos(α+β)cos(α-β)+2cos(α-β) b2-a2 =cos(α+β)(2+2 cos(α-β)) ...(2)

From (1) and (2), we have

b2-a2 =cos(α+β)a2+b2 b2-a2a2+b2 =cos(α+β)

sinα+β =1-cos2(α+β)sinα+β=1-b2-a2b2+a22 =b4+a4-b4-a4+4a2b2b2+a22 sinα+β=2aba2+b2

(ii)

a2+b2=sinα+sinβ2+(cosα+cosβ)2 =sin2α+sin2β+cos2α+cos2β+2sinαsinβ+2cosαcosβ =2+2 cos(α-β)b2-a2=(cosα+cosβ)2-sinα+sinβ2b2-a2 = cos2α+cos2β -sin2α-sin2β +2cosαcosβ-2sinαsinβb2-a2 =(cos2α-sin2β)+(cos2β-sin2α)-2cos(α+β) b2-a2 =2cos(α+β)cos(α-β)+2cos(α-β) b2-a2 =cos(α+β)(2+2 cos(α-β)) b2-a2 =cos(α+β)a2+b2 b2-a2a2+b2 =cos(α+β)

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon