1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration of Trigonometric Functions
If sinθ1+si...
Question
If
s
i
n
θ
(
1
+
s
i
n
θ
)
+
c
o
s
θ
(
1
+
c
o
s
θ
)
=
x
and
s
i
n
θ
(
1
−
s
i
n
θ
)
+
c
o
s
θ
(
1
−
c
o
s
θ
)
=
y
then
A
x
2
−
2
x
=
s
i
n
2
θ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
y
2
+
2
y
=
s
i
n
2
θ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
x
y
=
s
i
n
2
θ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
x
−
y
=
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are
A
y
2
+
2
y
=
s
i
n
2
θ
B
x
2
−
2
x
=
s
i
n
2
θ
C
x
−
y
=
2
D
x
y
=
s
i
n
2
θ
s
i
n
θ
(
1
+
s
i
n
θ
)
+
c
o
s
θ
(
1
+
c
o
s
θ
)
=
x
⇒
s
i
n
θ
+
s
i
n
2
θ
+
c
o
s
θ
+
c
o
s
2
θ
=
x
⇒
s
i
n
θ
+
c
o
s
θ
=
x
−
1
...(1)
s
i
n
θ
(
1
−
s
i
n
θ
)
+
c
o
s
θ
(
1
−
c
o
s
θ
)
=
y
⇒
s
i
n
θ
−
s
i
n
2
θ
+
c
o
s
θ
−
c
o
s
2
θ
=
y
⇒
s
i
n
θ
+
c
o
s
θ
=
y
+
1
...(2)
Equating (1) and (2)
x
−
1
=
y
+
1
⇒
x
−
y
=
2
Now as
s
i
n
2
θ
=
(
s
i
n
θ
+
c
o
s
θ
)
2
−
1
...(3)
Substituting (1) in (3), we get
s
i
n
2
θ
=
(
x
−
1
)
2
−
1
=
x
2
+
1
−
2
x
−
1
=
x
2
−
2
x
Substituting (2) in (3), we get
s
i
n
2
θ
=
(
y
+
1
)
2
−
1
=
y
2
+
1
+
2
y
−
1
=
y
2
+
2
y
And From
(
1
)
,
(
2
)
x
=
(
s
i
n
θ
+
c
o
s
θ
)
+
1
,
y
=
(
s
i
n
θ
+
c
o
s
θ
)
−
1
x
y
=
(
s
i
n
θ
+
c
o
s
θ
)
2
−
1
⇒
x
y
=
s
i
n
2
θ
Hence, all options are correct.
Suggest Corrections
0
Similar questions
Q.
If
sin
θ
(
1
+
sin
θ
)
+
cos
θ
(
1
+
cos
θ
)
=
x
and
sin
θ
(
1
−
sin
θ
)
+
cos
θ
(
1
−
cos
θ
)
=
y
, then
Q.
Simplify it :-
(
1
+
sin
θ
)
(
1
−
sin
θ
)
(
1
+
cos
θ
)
(
1
−
cos
θ
)
Q.
Prove the following trigonometric identities.
(i)
sec
θ
-
1
sec
θ
+
1
+
sec
θ
+
1
sec
θ
-
1
=
2
cosec
θ
(ii)
1
+
sin
θ
1
-
sin
θ
+
1
-
sin
θ
1
+
sin
θ
=
2
sec
θ
(iii)
1
+
cos
θ
1
-
cos
θ
+
1
-
cos
θ
1
+
cos
θ
=
2
cosec
θ
(iv)
sec
θ
-
1
sec
θ
+
1
=
sin
θ
1
+
cos
θ
2
(v)
sin
θ
+
1
-
cos
θ
cos
θ
-
1
+
sin
θ
=
1
+
sin
θ
cos
θ