If sinθ+cosθ=a,cosθ−sinθ=b, then sinθ(sinθ−cosθ)+sin2θ(sin2θ−cos2θ)+sin3θ(sin3θ−cos3θ)+.... is equal to
A
1−ab1+ab
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1−a23−a2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1−ab1+ab+1−a23−a2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1+ab1−ab+a2−13−a2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C1−ab1+ab+1−a23−a2 a2=1+2sinθ∗cosθ and b2=1−2sinθ∗cosθ and ab=cos2θ−sin2θ Separating the question into two sin2θ+sin4θ+sin6θ.....−(sinθ∗cosθ+sin2θ∗cos2θ+sin3θ∗cos3θ).... This is infinite geometric progression and Formula for it is a/(1-r) Now taking first part of this sin2θ+sin4θ+sin6θ....=sin2θ1−sin2θ=sin2θcos2θ 1−ab=2sin2θ and 1+ab=2cos2θ Therefore sin2θ+sin4θ+sin6θ....=sin2θcos2θ=1−ab1+ab Second part sinθ∗cosθ+sin2θ∗cos2θ+sin3θ∗cos3θ+....=sinθ∗cosθ1−sinθ∗cosθ Multiply and divide by 2 => 2sinθ∗cosθ2−2sinθ∗cosθ=a2−12−(a2−1)=a2−13−a2 Finally combining both the above equ sin2θ+sin4θ+sin6θ.....−(sinθ∗cosθ+sin2θ∗cos2θ+sin3θ∗cos3θ)...=1−ab1+ab−(a2−1)(3−a2)=1−ab1+ab+(1−a2)(3−a2)