Given,
sinA=1213
We know that,
sinA=oppositeSideHypotenuse
From Pythagoras theorem,
(Hypotenuse)2=(oppositeSide)2+(adjacentSide)2
132=122+(adjacentSide)2
(adjacentSide)2=169−144=25
(adjacentSide)=5
cosA=AdjacentSideHypotenuse=513
tanA=OppositeSideAdjacentSide=125
Therefore,
sin2θ−cos2θ2sinθcosθ×1tan2θ
=(1213)2−(513)22(1213)(513)×1(125)2
=(144169)−(25169)2(1213)(513)×25144
=(144−25169)(120169)×25144
=119120×25144
=11924×5144
=5953456