wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinθ=1213, find the value of sin2θcos2θ2sinθcosθ×1tan2θ

Open in App
Solution

Given,

sinA=1213

We know that,

sinA=oppositeSideHypotenuse


From Pythagoras theorem,

(Hypotenuse)2=(oppositeSide)2+(adjacentSide)2

132=122+(adjacentSide)2

(adjacentSide)2=169144=25

(adjacentSide)=5


cosA=AdjacentSideHypotenuse=513

tanA=OppositeSideAdjacentSide=125

Therefore,

sin2θcos2θ2sinθcosθ×1tan2θ

=(1213)2(513)22(1213)(513)×1(125)2

=(144169)(25169)2(1213)(513)×25144

=(14425169)(120169)×25144

=119120×25144

=11924×5144

=5953456



flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of a Right Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon