wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin θ+sin ϕ=a and cos θ+cos ϕ=b, (ab, a0, b0) then -

A
tan θ+tan ϕ=8ab(a2+b2)2+4b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cos θ.cos ϕ=(a2+b2)24a24(a2+b2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
cos (θ+ϕ)=b2a2b2+a2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
sin (θ+ϕ)=4ab(a2+b2)+2b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C cos (θ+ϕ)=b2a2b2+a2
Squaring and adding

1+1+2 cos(θϕ)=a2+b2cos(θϕ)=a2+b222


2 sin(θ+ϕ2) cos(θϕ2)=a2 cos(θ+ϕ2) cos(θϕ2)=b–––––––––––––––––––––––––––tan(θ+ϕ2)=ab

cos(θ+ϕ)=1tan2(θ+ϕ2)1+tan2(θ+ϕ2)=1a2b21+a2b2=(b2a2b2+a2)

sin(θ+ϕ)=2 tan(θ+ϕ2)1+tan2(θ+ϕ2)=2×ab1+a2b2=(2aba2+b2)

cos θ cos ϕ=12(cos(θ+ϕ)+cos(θϕ))=12(b2a2b2+a2+a2+b222)

=(a2+b2)24a24(a2+b2)

tanθ+tanϕ=sinθcosθ+sinϕcosϕ=sin(θ+ϕ)cosθ.cosϕ=8ab(a2+b2)24a2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon