wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinx=2t1+t2,tany=2t1−t2, then dydx is equal to

A
-1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 1
sinx=2t1+t2
Differentiate both sides w.r.t. t
cosxdxdt=(1+t2)(2)2t(0+2t)(1+t2)2
cosxdxdt=2+2t24t2(1+t2)2
cosxdxdt=22t2(1+t2)2
dxdt=2(1t2)(1+t2)2×1+t2(1+t2)24t2[cosx=1sin2x]
dxdt=2(1t2)(1+t2)2×1+t21+t4+2t24t2
dxdt=2(1t2)1+t2×1(1+t2)2=21+t2(1)
Now, tany=2t1t2
sec2ydydt=(1t2)(2)2t(02t)(1t2)2=2+2t2(1t2)2
dydt=2(1+t2)(1t2)2×1[1+[2t1t2]2][sec2x=tan2x+1]
dydt=2(1+t2)(1t2)2×(1t2)2(1t2)2+4t2=2(1t2)(1t2)2
=21+t2(2)
dydx=dy/dtdx/dt=2/(1t2)2/(1t2)
=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon