Givensinx=√9910Now,log(sinx)−log(tanx)=log(sinx.tanx)∴[loga+logb=log(ab)]=log(sinx.sinxcosx)=log(sin2xcosx)−−−−(1)sinx=√9910∴cosx=√1−sin2x=√1−99100cosx=√(110)2⇒cosx=110[0<x<90∘]Substitutevalueofsinxandcosxinequn(1)wegetlog(sinx)+log(tanx)=log(99100110)=log(99100×101)=log(9910)=log99−log10=log99−1