If Sin(x+y)=log(x+y) then dydxis equal to
2
-2
1
-1
Explanation for the correct option
Step 1:Differentiate with respect to x
Given information
⇒Sin(x+y)=log(x+y)
∴cos(x+y)1+dydx=1x+y1+dydx
⇒cos(x+y)+cos(x+y)dydx=1x+y+1x+ydydx
Step 2: Compare on both sides and take differential at one side
⇒cos(x+y)dydx-1x+ydydx=1x+y-cos(x+y)
⇒cos(x+y)-1x+ydydx=1x+y-cos(x+y)
⇒dydx=1x+y-cos(x+y)cos(x+y)-1x+y
⇒dydx=-1x+y-cos(x+y)1x+y-cos(x+y)
⇒dydx=-1
Therefore the value of dydx is -1
Hence option (4) is the correct answer.