wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin xy=cos yx, prove that dydx=log cos y-y cot xlog sin x+x tan y

Open in App
Solution

We have, sinxy=cosyx
Taking log on both sides,
logsinxy=logcosyx y logsinx=x logcosy
Differentiating with respect to x,
ddxy log sinx=ddxx logcosyyddxlog sinx+log sinxdydx=xdydxlog cosy+log cosyddxx y1sinxddxsinx+log sinxdydx=xcosyddxcosy+logcosy1ysinxcosx+log sinxdydx=xcosy-sinydydx+log cosyy cotx+log sinxdydx=-x tanydydx+log cosydydxlog sinx+x tany=log cosy-y cotxdydx=log cosy-y cotxlog sinx+x tany

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon